MAGX-002735-040L00

GaN HEMT Pulsed Power Transistor 2.7 - 3.5 GHz, 40W Peak, 300us Pulse, 10% Duty Cycle

Production V1 26 March 12

Features

- GaN depletion mode HEMT microwave transistor
- Common source configuration
- Broadband Class AB operation
- Thermally enhanced Cu/Mo/Cu package
- **RoHS Compliant**
- +50V Typical Operation
- MTTF of 600 years (Channel Temperature < 200°C)

Application

Civilian and Military Pulsed Radar

Product Description

The MAGX-002735-040L00 is a gold metalized matched Gallium Nitride (GaN) on Silicon Carbide RF power transistor optimized for civilian and military radar pulsed applications between 2700 - 3500 MHz. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth, ruggedness over a wide bandwidth for today's demanding application needs. The MAGX-002735-040L00 is constructed using a thermally enhanced Cu/Mo/Cu flanged ceramic package which provides excellent thermal performance. High breakdown voltages allow for reliable and stable operation in extreme mismatched load conditions unparalleled with older semiconductor technologies.

Typical RF Performance

Freq (MHz)	Pin (W Peak)	Pout (W Peak)	Gain (dB)	Id-Pk (A)	Eff (%)
2700	4	44	10.4	1.7	53
2800	4	45	10.5	1.7	53
2900	4	44	10.5	1.6	56
3000	4	43	10.3	1.7	51
3100	4	46	10.6	1.7	54
3200	4	47	10.7	1.7	54
3300	4	47	10.7	1.7	57
3400	4	43	10.3	1.5	55
3500	4	42	10.2	1.5	55

Typical RF performance measured in M/A-COM RF test fixture. Devices tested in common source Class-AB configuration as follows: Vdd=50V, Idq=250mA (pulsed), F=2.7-3.5 GHz, Pulse=300us, Duty=10%.

Ordering Information

40W GaN Power Transistor MAGX-002735-040L00 MAGX-002735-SB0PPR **Evaluation Fixture**

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

MAGX-002735-040L00

GaN HEMT Pulsed Power Transistor 2.7 - 3.5 GHz, 40W Peak, 300us Pulse, 10% Duty Cycle

Production V1 26 March 12

Absolute Maximum Ratings Table (1, 2, 3)

+65V			
-8 to 0V			
3 A			
+36 dBm			
200 °C			
27 W			
55 W			
600 years			
2.0 °C/W			
-40 to +95C			
-65 to +150C			
See solder reflow profile			
50 V			
>250 V			
MSL1			

⁽¹⁾ Operation of this device above any one of these parameters may cause permanent damage.

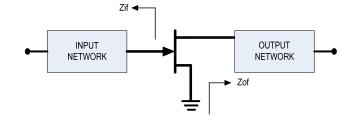
⁽³⁾ For saturated performance it recommended that the sum of (3*Vdd + abs(Vgg)) <175

Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
DC CHARACTERISTICS						
Drain-Source Leakage Current	V _{GS} = -8V, V _{DS} = 175V	I _{DS}	-	-	2.5	mA
Gate Threshold Voltage	$V_{DS} = 5V$, $I_D = 6mA$	V _{GS (th)}	-5	-3	-2	V
Forward Transconductance	$V_{DS} = 5V, I_{D} = 1.5mA$	G_{M}	1.0	-	-	S
DYNAMIC CHARACTERISTICS						
Input Capacitance	$V_{DS} = 0v$, $V_{GS} = -8V$, $F = 1MHz$	C _{ISS}	-	13.2	1	pF
Output Capacitance	$V_{DS} = 50V, \ V_{GS} = -8V, F = 1MHz$	Coss	-	5.6	-	pF
Reverse Transfer Capacitance	$V_{DS} = 50V, V_{GS} = -8V, F = 1MHz$	C _{RSS}	-	0.5	-	pF

⁽²⁾ Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 • Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.


Production V1 26 March 12

Electrical Specifications: T_C = 25 ± 5°C (Room Ambient)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
Output Power	Pin = 4W Peak	P _{OUT}	36 3.6	44 4.4	-	W Peak W Ave
Power Gain	Pin = 4W Peak	G _P	9.5	10.5	-	dB
Drain Efficiency	Pin = 4W Peak	η_{D}	48	55	-	%
Load Mismatch Stability	Pin = 4W Peak	VSWR-S	5:1	-	-	-
Load Mismatch Tolerance	Pin = 4W Peak	VSWR-T	10:1	i	-	-

Test Fixture Impedance

F (MHz)	Z _{IF} (Ω)	Z _{OF} (Ω)		
2700	9.2+ j2.1	7.5 + j8.9		
2800	9.0 + j1.5	7.9 + j8.9		
2900	8.7 + j0.8	8.2 + j8.5		
3000	8.3 + j0.1	8.3 + j8.3		
3100	7.8 - j0.7	8.2 + j8.4		
3200	7.0 - j1.5	9.1 + j8.3		
3300	6.0 - j2.0	9.4 + j7.2		
3400	4.9 - j2.1	9.4 + j7.2		
3500	4.2 - j2.7	9.0 + j6.8		

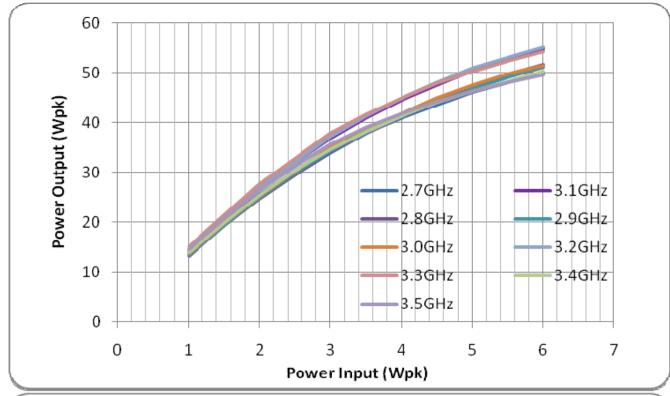
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

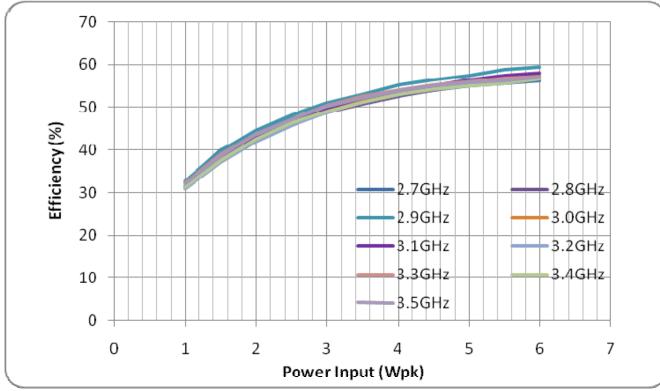
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples and/or test data may be avail-

able. Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

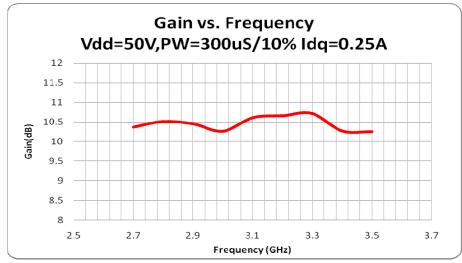

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

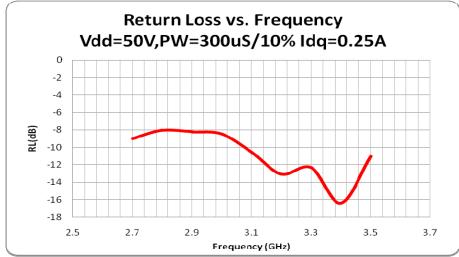

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

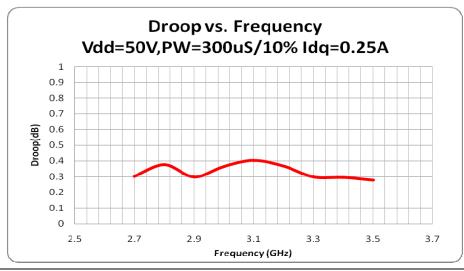
Visit www.macomtech.com for additional data sheets and product information.

Production V1 26 March 12

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.


PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

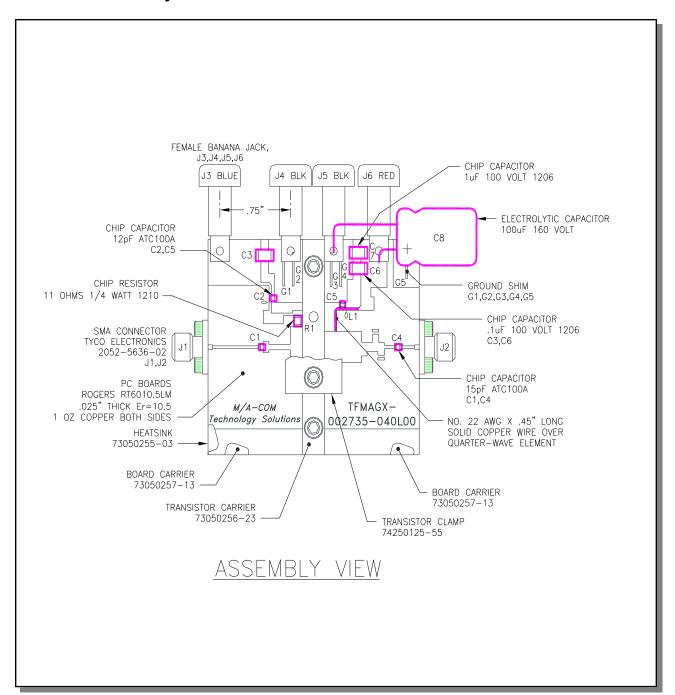

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.


M/A-COM Technology Solutions and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Production V1 26 March 12

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.


- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

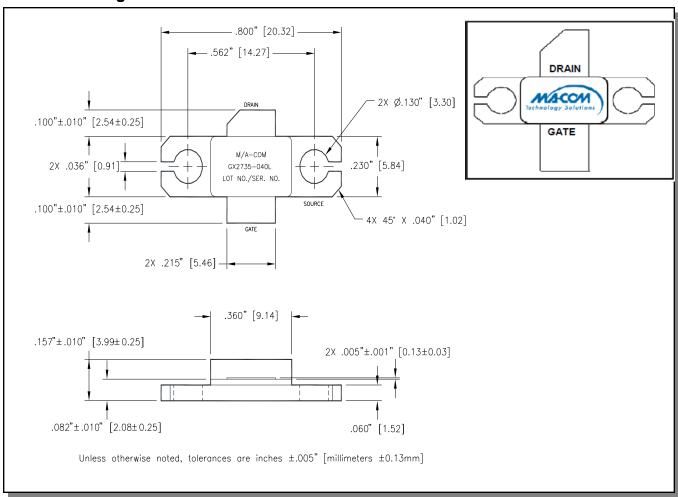
M/A-COM Technology Solutions and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Production V1 26 March 12

Test Fixture Assembly

6

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.


PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

Production V1 26 March 12

Outline Drawings

CORRECT DEVICE SEQUENCING

TURNING THE DEVICE ON

- 1. Set V_{GS} to the pinch-off (V_P) , typically -5V
- 2. Turn on V_{DS} to nominal voltage (50V)
- 3. Increase V_{GS} until the I_{DS} current is reached
- 4. Apply RF power to desired level

TURNING THE DEVICE OFF

- 1. Turn the RF power off
- 2. Decrease V_{GS} down to V_P
- 3. Decrease V_{DS} down to 0V
- 4. Turn off V_{GS}

7

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.